HigherMath.in Officially Launched! 🎉
Real Analysis – Sequences & Series Complete Notes (3000+ words)
Most important topic for CSIR NET Mathematics – 20–30 marks guaranteed!
Aaj se HigherMath.in officially launch ho gaya. Yeh pehla monster article hai – full theory + proofs + 45+ CSIR NET previous year questions with detailed solutions.
1. Sequence – Basic Definitions & Convergence
A sequence $\{a_n\}$ converges to $L$ if
$$\forall \varepsilon > 0 \ \exists\ N \in \mathbb{N} \text{ such that } \forall n > N,\ |a_n - L| < \varepsilon$$
$(a_n + b_n) \to L+M$, $(a_n b_n) \to LM$, $(a_n / b_n) \to L/M$ (if $M \neq 0$)
2. Cauchy Sequence (Sabse Important)
In $\mathbb{R}$: Convergent $\Leftrightarrow$ Cauchy (Completeness axiom)
3. Monotonic + Bounded = Converges
CSIR NET Previous Year Questions (Solved)
Q (2024): Which of the following is Cauchy but not convergent in $\mathbb{Q}$?
→ $a_n = (1 + 1/n)^n$ (converges to e ∉ ℚ) → Ans: Cauchy in ℚ but not convergent in ℚ
Q (2022): $\limsup$ and $\liminf$ of $\{(-1)^n + 1/n\}$?
→ $\limsup = 1$, $\liminf = -1$
Quick Revision Table
| Property | Implication |
|---|---|
| Monotonic + Bounded | Converges |
| Cauchy in ℝ | Converges |
| Has exactly one limit point | Converges |
Last Updated: 08 December 2025 | Next Article: Linear Algebra (Tomorrow)